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Abstract. This is a study of q-Fermions resulting from q-deformed algebra of harmonic oscillators arising
from two distinct algebras. Employing the first algebra, the Fock states are constructed for the generalized
Fermions obeying Pauli exclusion principle. The distribution function and other thermodynamic properties
such as the internal energy and entropy are derived. Another generalization of fermions from a different
q-deformed algebra is investigated which deals with q-fermions not obeying the exclusion principle. Fock
states are constructed for this system. The basic numbers appropriate for this system are determined as
a direct consequence of the algebra. We also establish the Jackson Derivative, which is required for the
q-calculus needed to describe these generalized Fermions.

PACS. 02.20.Uw Quantum groups – 03.65.-w Quantum mechanics – 05.30.-d Quantum statistical
mechanics – 05.90.+m Other topics in statistical physics, thermodynamics, and nonlinear dynamical
systems

1 Introduction

We shall investigate q-deformed Fermions arising as a con-
sequence of the q-deformed algebra [1] of harmonic os-
cillators. We shall study two distinct algebras. First we
shall consider generalized Fermions obeying the algebra
a†+q−1a†a = q−N , 0 ≤ q ≤ 1 which will be shown to obey
the exclusion principle, with the Fock states restricted to
n = 0, 1 only. This algebra is not associated with ba-
sic numbers and require the use of ordinary derivatives
rather than the Jackson Derivative (JD) of q-calculus. We
shall investigate in detail, the statistical thermodynamics
of these Fermions. Despite the fact that they obey the ex-
clusion principle, the thermodynamic properties are quite
different from that of ordinary Fermions.

We shall also investigate q-deformed Fermions arising
from the oscillator algebra aa† + q a†a = q−N , 0 ≤ q ≤ 1.
It will be shown that these generalized Fermions do not
obey the exclusion principle and the Fock states consist
of n = 0, 1, 2, 3, · · · with arbitrary number of quanta.
We shall not investigate the thermodynamics of these
Fermions, but confine ourselves to a study of the Fock
states and some general properties. We shall establish the
JD needed for the q-calculus governing this system.

2 q-Fermions obeying Exclusion principle

Let us begin with the algebra defined by

aa† + q−1a†a = q−N , 0 ≤ q ≤ 1, (1)
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which reduces to the standard Fermi algebra in the limit
q → 1, together with relations [N, a] = −a, [N, a†] = a† ,
where a, a† are the annihilation and creation operators, N
is the number operator and q is the deformation param-
eter, which is a c-number. Let us introduce the operator
a†a = N̂ , with the concomitant action on Fock states,
N̂ |n〉 = βn|n〉, where the eigenvalue depends on n. The
relation N̂a† + q−1a†N̂ = a†q−N follows from the algebra
in equation (1). We may set a|n〉 = Cn|n − 1〉, a†|n〉 =
C′

n|n+1〉 , where the constants Cn, C′
n can be determined.

As a consequence we immediately obtain the recurrence
relation

βn+1 = q−n − q−1βn. (2)

We may choose β0 = 0, thus defining the ground state as
vacuum. We accordingly obtain the solution

βn = 0, 1, 0, q−2, 0, q−4, · · · =
1 − (−1)n

2
q−n+1. (3)

The action of the creation and annihilation operators on
the Fock states yields the results

a†|0〉 =
√

β1|1〉 = |1〉; a†a†|0〉 =
√

β1

√
β2|2〉 = 0, (4)

the sequence of states thus terminates and consequently
the Fock states are |0〉, |1〉 only. The generalized Fermions
thus obey Pauli exclusion principle, just as ordinary
Fermions do. As this algebra is not related to basic num-
bers [2], this formulation of q-fermions would employ the
ordinary derivatives of thermodynamics rather than that
of q-calculus. This is in contrast to the q-Fermions [3]
where q-calculus analogous to q-Bosons is assumed.
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3 Thermostatics of q-fermions

From the definition of the expectation value

n̂ =
1
ZTr(e−βHN̂) =

1
ZTr(e−βHa†a), (5)

and from the form of the Hamiltonian H =
∑

i N̂i (Ei−µ) ,

with the operator N̂ in the state i, we can determine the
distribution function. It should be noted that N̂ depends
on q, the deformation parameter. Using the cyclic property
of the trace and the relations af(N) = f(N + 1)a, valid
for any polynomial function f(N), we obtain the result

n̂i =
q−n̂i

eβ(Ei−µ) + q−1
. (6)

We shall henceforward drop the hat notation for simplic-
ity. Using equation (2), this may be re-expressed to obtain
the distribution function in the form

ni =
2
π

arcsin

(√
q−1

eβ(Ei−µ) + q−1

)

. (7)

Recalling that the Fock states reduce to n = 0, 1 only,
we observe that sin2 nπ/2 = 0, 1 which can therefore be
replaced by n without losing generality. Consequently the
distribution function reduces to the simple form

ni =
q−1

eβ(Ei−µ) + q−1
. (8)

We have thus taken advantage of the exclusion principle to
put the above equation in a simple form. Following stan-
dard procedure [4], we may now proceed to investigate the
thermostatistics of q-Fermions as follows. The logarithm
of the partition function is

lnZ =
∑

i

ln(1 + q−1ze−βEi), (9)

which reproduces the form in equation (8), namely

ni = z
∂

∂z
lnZ =

q−1

eβ(Ei−µ) + q−1
. (10)

Replacing the sum over states by an integration and in-
troducing the thermal wavelength, λ = h/

√
2πmkT in the

standard manner [4], we determine the expression for the
thermodynamic potential

Ω = − 1
β

lnZ = − 1
βλ3

ln(1 + q−1z) − 1
βλ3

f5/2(q, z),

(11)
where the generalized Riemann Zeta function fn is de-
fined by

fn(qz) =
∞∑

r=1

(−1)r+1 (qz)r

rn
. (12)

The pressure and the mean density of the q-Fermions are
determined in the thermodynamic limit as:

P = lim
V →∞,N→∞

(
−Ω

V

)
=

1
βλ3

f5/2(q−1z),

N

V
=

1
λ3

f3/2(q−1z), (13)

where v = V/N . In the standard notation, we obtain the
virial expansion

Pv

kT
= 1 +

1
25/2

(
λ3

v

)
+

(
1
8
− 2

35/2

) (
λ3

v

)2

+ · · · . (14)

The virial coefficients are independent of q, hence do not
show deformation. Indeed it is the same as for ordinary
fermions and differs from reference [3]. The internal energy
and the entropy are given by

U =
3kTV

2λ3
f5/2(q−1z),

S

Nk
=

5
2

f5/2(q−1z)
f3/2(q−1z)

− ln z. (15)

It is easily verified that all of these properties have the
correct Fermi limit when q → 1. We shall now state some
further general results for the q-fermions.

In the limit of large energy, the distribution function
reduces to ni −→ q−1e−βEi , which, other than the
normalization factor, describes the quantum Boltzmann
statistics. In the limit when E = µ, the distribution
reduces to

ni =
q−1

1 + q−1
≥ 1

2
, (16)

which takes the value 1
2 only in the Fermi limit when q = 1.

In the low temperature limit, when T → 0, it is clear from
equation (8) that the distribution function reduces to the
standard unmodified step form for all values of q. Hence
the effect of the deformation may be interpreted solely as
a finite temperature effect.

The dependence on the parameter q is somewhat
subtle for many of the thermodynamic functions and
it is worthwhile discussing this. As an illustration, we
shall examine the chemical potential in some detail. The
number density is given by the distribution function

N

V
=

1
λ3

f3/2(q−1z), (17)

which can be expressed by the series

N

V
=

4π

3

(
2mkT

h2

)3/2

(ln(q−1z)3/2)

×
(

1 +
π2

8
(ln(q−1z)−2) + · · ·

)
, (18)
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and may be employed to determine the chemical poten-
tial µ of q-fermions in terms of the Fermi-energy EF of
standard Fermions. In the lowest approximation, we ob-
tain the result

µ = EF − kT ln q−1, EF =
3N

4πgV

2/3 h2

2m
. (19)

which shows that the q-dependence appears only at finite
temperatures. The expression beyond the zeroth approxi-
mation is given by

µ = −kT ln q−1 + EF

(

1 − π2

12

(
kT

EF

)2

+ · · ·
)

, (20)

which shows that the chemical potential of q-fermions is
different from that of standard Fermions for q �= 1.

4 Parthasarathy-Viswanathan algebra

We shall now examine the algebra ff † + qf †f = q−N , in-
troduced by Parthasarathy and Viswanathan [5], together
with the relations [N, f ] = −f [N, f †] = f † . This alge-
bra has also been discussed by Chaichian et al. [6] and
it has the expected Fermi limit when q → 1. Let the
operator Ñ = f †f act on the Fock states |n〉 so that
Ñ |n〉 = αnÑ |n〉 , where the eigenvalue depends on n. We
see that the relation Ñf †+qf †Ñ = q−Nf † follows directly
from the algebra. If we take f |n〉 = Cn|n− 1〉, f †|n〉 =
C′

n|n + 1〉 , where Cn, C′
n are constants, we immediately

obtain the relation αn+1 = q−n − q αn for any n. Solv-
ing this recurrence relation, we accordingly determine αn

to be

α0 = 0, α1 = 1, α2 = q−1 − q, · · · ,

αn = q−n+1 − q−n+3 + · · · qn−3 − qn−1, (21)

which is immediately recognized as the basic number,

αn = [n] =
q−n − (−1)nqn

q + q−1 , (22)

appropriate for q-fermions [5] and the solution of the re-
currence relation above indeed explains how f †f = [N ]
is a direct consequence of the algebra. We further obtain
the result ff † = [N + 1]. We observe that Pauli exclusion
principle is valid only in the limit q → 1. For arbitrary
values of q, we may construct the Fock states according to

|n〉 =
(a†)n

√
[n]!

|0〉, (23)

where [n]! = [n] · [n − 1] · · · [1]. The exclusion principle
follows when q → 1 since α2 = 0. Hence we need not
assume the relation f2 = (f †)2 = 0 as in ref.[6] for in-
voking the exclusion principle in the limit. These are gen-
eralized fermions with |n〉, n = 0, 1, 2, · · · when q �= 1.
However, [n] = 1

2 (1 − (−1)n) in the limit q → 1 and the

Fock space breaks up into an infinity of 2-dimensional sub-
spaces when q = 1, with the Pauli principle valid in each
subspace. The basic number here exhibits skew symmetry
i.e., [n] −→ ±[n] for n =odd, even and this contrasts with
the situation in other algebras. Thus special care is needed
in order to identify q-calculus with JD in this formalism
which determines the thermodynamics of these general-
ized Fermions. For this purpose, we proceed to analyze as
follows.

First, we recall the JD in the q-boson case [3] which
reduces to the ordinary derivative in the limit q → 1.
To study the case of q-fermions, arising from the algebra
ff † + qf †f = q−N , we may invoke the holomorphy re-
lation f ⇐⇒ Dx, f † ⇐⇒ x. The algebra thus implies
Dxx + qxD = q−N . It may be useful to recall that the
holomorphy leads to properties [7] such as

qNx = xqN+1; qNxr = (qx)r [N ]x = x[N + 1],

[N ]x + qxN = xq−N , (24)

etc. Consequently, we infer the solution of Dxx + qxD =
q−N to be

Dx =
1
x

q−N − (−1)NqN

q + q−1
(25)

as the appropriate JD for q-fermions. If we now employ
the properties

qNf(x) = f(qx), q−Nf(x) = f(q−1x),

(−q)Nf(x) = f(−qx), (26)

this can be expressed as a differential operator in the stan-
dard manner,

Dx f(x) =
1
x

f(q−1x) − f(−qx)
q + q−1

, (27)

valid for q-fermions. One can investigate many of the prop-
erties [8] satisfied by the JD. In particular the q-Fermion
JD does not reduce to the ordinary derivative when q → 1.

5 Summary and conclusion

We have investigated the consequences of the q-deformed
algebra a† + q−1a†a = q−N , 0 ≤ q ≤ 1 describing gen-
eralized Fermions obeying the exclusion principle which
reduces to the ordinary Fermions in the limit q → 1.
In addition to the mathematical formulation, we have
presented detailed physical applications of the general-
ized Fermions and determined the various thermodynamic
functions such as the partition function, pressure, and the
entropy. We have also determined the dependence on q of
the chemical potential as a function of temperature. This
is an example where the deformation is seen to be a fi-
nite temperature effect. The Fock states are constructed
by |n〉 = (a†)n/

√
βn !|0〉 , where βn depends on q and

βn = 0, 1 for n = 0, 1. While the thermodynamic proper-
ties of these Fermions are dependent on the deformation
parameter, the algebra nevertheless has no basic numbers



294 The European Physical Journal B

associated with it and the system is governed by the ordi-
nary calculus of thermodynamics, in contrast to the earlier
work cited [3].

We have also investigated the generalized Fermions,
not obeying the exclusion principle, stemming from an-
other q-deformed oscillator algebra. We have established
the following basic premises. The Fock states of these gen-
eralized Fermions can be built from the action of the
creation operators and require the use of Fermion ba-
sic numbers which follow directly from the algebra. The
q-calculus needed to study the thermostatics of these
Fermions must employ a JD which is characteristic of the
nature of the generalized Fermions. We have determined
the form of this JD.

The author would like to thank A. Lavagno and A. Scarfone
of Politecnico di Torino, Torino, Italy, for valuable discussions
on the subject of q-deformed algebras.
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